Monatshefte für Chemie Chemical Monthly

© Springer-Verlag 1994 Printed in Austria

Synthesis and Properties of 2,2'-Dipyridyl and 4,4'-Dipyridyl Complexes with Thulium Salts

D. Czakis-Sulikowska, J. Radwańska-Doczekalska, and M. Markiewicz

Institute of General and Ecological Chemistry, Polytechnical University, PL-90924 Lódź, Poland

Summary. New complexes of 2,2'-dipyridyl and 4,4'-dipyridyl with thulium salts TmX_3 (where $X = Cl^-$, Br^- , NO_3^- , NCS^- , and ClO_4^-) have been prepared and their solubilities in water at $21\,^{\circ}C$ were determined. The IR spectra of these compounds are discussed. The conditions of thermal decomposition of the complexes were also studied.

Keywords. 2,2'-Dipyridyl complexes; 4,4'-Dipyridyl complexes; Thulium complexes; Infrared spectra; Thermal decomposition.

Synthese und Eigenschaften von 2,2'-Dipyridyl- und 4,4'-Dipyridylkomplexen mit Thuliumsalzen

Zusammenfassung. Es wurden neue 2,2'-Dipyridyl- und 4,4'-Dipyridyl-Komplexe mit Thuliumsalzen TmX_3 ($X = Cl^-$, Br^- , NO_3^- , NCS^- , ClO_4^-) dargestellt und ihre Wasserlöslichkeit bei 21 °C bestimmt. Die IR-Spektren werden diskutiert. Das thermische Verhalten der erhaltenen Komplexe wurde untersucht.

Introduction

The compounds of 2,2'-dipyridyl (2-dipy or L) and 4,4'-dipyridyl (4-dipy or Y) with thulium are comparatively little known. Hart and Laming [1] obtained the complex $TmCl_3(2-dipy)_2$. The thermal decomposition point for this complex is 230-240 °C. Labanov and Smirnova [2] have prepared the compound $Tm(NO_3)_3(2-dipy)_2$ from 95% ethanol solution. Its physico-chemical properties were not investigated.

The present paper shows the results of the synthesis of complexes of 2-dipy and 4-dipy with TmX_3 , where $X = Cl^-$, Br^- , NO_3^- , NCS^- , and ClO_4^- . The thermal decomposition, IR spectra and other properties of these compounds have been investigated.

Results and Discussion

The compounds prepared for this study are listed in Table 1. The isolated 2-dipy complexes with Tm(NCS)₃ and TmBr₃ have analogous composition as the complexes with thiocyanate salts in the series Sm-Lu [14] and bromide salts in the series La-Lu (except Ce and Pm) [13]. The compound Tm(NO₃)₃(2-dipy)₂ has a similar composition as that obtained by Labanov and Smirnova [2]. The 2-dipy

Table 1. Analytical data of 2,2'-dipyridyl (L) and 4,4'-dipyridyl (Y) complexes with thulium and their	
solubility (S) in water at 21 °C	

Compound	% Tm calcd. found	% N calcd. found	% C calcd. found	% H calcd. found	% X calcd. found	$S \cdot 10^2$ (mol·l ⁻¹)
$-$ TmCl ₃ L_2 ·H ₂ O	27.89	9.25	39.66	3.00	17.56	
ŭ <i>-</i> -	27.4	9.1	34.0	3.0	17.4	2.93
$TmBr_3L_2 \cdot 6H_2O$	20.38	6.76	28.97	3.40	28.91	
2 2 2	21.0	6.7	29.0	3.2	28.9	4.75
$Tm(NO_3)_3L_2$	25.32	14.69	36.00	3.32		
5,5 2	26.0	14.2	36.1	3.2		3.38
$Tm(NCS)_3L_2 \cdot 5H_2O$	22.66	13.15	37.05	3.51	23.37	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22.7	13.2	37.2	3.5	23.0	1.50
$Tm(ClO_4)_3L_2 \cdot 6H_2O$	19.03	6.31	27.06	3.18	33.61	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18.5	6.4	27.4	3.2	34.0	1.70
TmCl ₃ Y ₃ ·6H ₂ O	19.83	9.86	42.30	4.26	12.48	
5	20.0	9.9	42.7	4.0	12.8	0.53
$TmBr_3Y_2 \cdot 6H_2O$	20.38	6.76	28.97	3.40	28.91	
·	21.0	6.5	29.1	3.3	28.9	1.70
$Tm(NO_3)_3 Y_2 \cdot 3H_2O$	23.42	13.59	33.30	3.07		
2,5 2	23.2	14.0	33.5	3.1		2.40
$Tm(NCS)_3 Y_4 \cdot 8H_2O$	15.19	13.86	46.44	4.35	15.67	
75 4 2	15.5	13.5	46.0	4.3	15.0	0.90
$Tm(ClO_4)_3 Y_8 \cdot HClO_4 \cdot 4H_2O$	8.94	11.86	50.86	3.89	21.06	
73 0 -7 2	9.0	11.6	50.9	3.9	21.7	0.38

 $X = \text{Cl}^-, \text{Br}^-, \text{NCS}^-, \text{ or ClO}_4^-$

complex with $TmCl_3$ obtained in the present work is hydrated, in comparison with the compound described by Hart and Laming [1]. The composition of the 2-dipy compound with $Tm(ClO_4)_3$ is different from other complexes of rare earths [4].

The reaction between 4-dipy and thulium perchlorate affords a complex of analog chemical composition as all rare earth ions (except Pm and Ce) with the general formula $Ln(ClO_4)_3(4-dipy)_8 \cdot HClO_4 \cdot 4H_2O$ [4]. Thulium chloride and nitrate also give compounds with 4-dipy: $TmCl_3(4-dipy)_3 \cdot 6H_2O$ and $Tm(NO_3)_3(4-dipy)_2 \cdot 3H_2O$, similar as Pr and Yb, respectively [13]. The complex of 4-dipy with $Tm(NCS)_3$ was obtained with a metal to 4-dipy ratio of 1:4 (formula: $Tm(NCS)_3(4-dipy)_4 \cdot 8H_2O$). It has a composition different from other compounds of 4-dipy with $Ln(NCS)_3$ [14] and crystallizes very slow. The isolated compound $TmBr_3(2-dipy)_2 \cdot 6H_2O$ has a similar composition as the complexes of Y, La, Pr, Nd, and Tb [13, 15, 16].

All isolated compounds are air stable at room temperature. They are practically insoluble in benzene, $CHCl_3$, and CCl_4 . The solubility of the complexes in water is in the range of $10^{-2}-10^{-3}$ mol·l⁻¹ (Table 1).

From diffractogram analysis it appears that the obtained complexes are crystalline compounds. The $Tm(NCS)_3(2-dipy)_2 \cdot 5H_2O$ complex (Fig. 1a) has the

Dipyridyl Complexes 1077

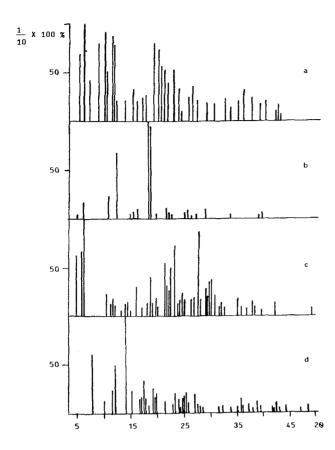


Fig. 1. X-ray diffraction patterns of complexes $Tm(NCS)_3(2-dipy)_2 \cdot 5H_2O$ (a), $Tm(ClO_4)_3(4-dipy)_8 \cdot HClO_4 \cdot 4H_2O$ (b), $TmBr_3(4-dipy)_2 \cdot 6H_2O$ (c), and $Tm(NO_3)_3(4-dipy)_2 \cdot 3H_2O$ (d)

same structure as other lanthanide (Y, Sm-Yb) complexes of this type [14]. The $Tm(ClO_4)_3(4-dipy)_8 \cdot HClO_4 \cdot 4H_2O$ compound is characterized by high symmetry (Fig. 1b) and is isostructural with other 4-dipy complexes with $Ln(ClO_4)_3$ [4]. The remaining compounds are characterized by low symmetry (as an example, see Figs. 1c and 1d).

Infrared Spectra

Water Vibrations. In the O-H stretching region a very broad-absorption for hydrates, extending from about 3750 to 3080 cm⁻¹, occured. In the O-H bending region, a weak band was observed at about 1640 cm⁻¹.

Perchlorate Vibrations. The presence of a very strong band at $1110-1100 \,\mathrm{cm}^{-1}$ (asymmetric stretch v_3) and a medium band (asymmetric band v_4) at $656 \,\mathrm{cm}^{-1}$ for the 2-dipy complex is observed. The spectra of the 4-dipy complex show the v_3 band at $1090 \,\mathrm{cm}^{-1}$ and the v_4 band at $650 \,\mathrm{cm}^{-1}$. A weak band (v_1) is observed at 928 and 935 cm⁻¹ for 2-dipy and 4-dipy complexes, respectively. This indicates that in the investigated compounds the perchlorate ion (T_d) remains uncoordinated [17, 18]. If the perchlorate group would be coordinated and the symmetry lowered from T_d to C_{3V} , the broad v_3 band should be split into two strong peaks at approximately 1030 and 1140 cm⁻¹, and the v_1 mode should exhibit a much stronger intensity and be shifted to a slightly lower frequency [19]. Although the v_1 mode for ionic

perchlorates is theoretically forbidden in the IR, it is invariable present in solid spectra due to the activation by site symmetry [17]. This weak band has been observed in IR spectra of several other lanthanide complexes containing tetrahedral perchlorate [4, 20].

Thiocyanate Vibrations. $v_{\rm CN}$ of the NCS⁻ group appears as a strong doublet at about 2110–2070 cm⁻¹ in the case of the 2-dipy complex. The position of $v_{\rm CS}$ is observed as a weak band at 814 cm⁻¹. The $\delta_{\rm NCS}$ band can be identified at 480 cm⁻¹.

The $v_{\rm CN}$ mode of the IR spectra of 4-dipy complex is observed at 2098–2084 cm⁻¹ as a very strong doublet. The $v_{\rm CS}$ frequencies could not be identified in the spectra of ${\rm Tm}({\rm NCS})_3(4\text{-}dipy)_5\cdot {\rm H_2O}$ due to the proximity of the 4-dipy band. The $\delta_{\rm NCS}$ band is identified at 470 cm⁻¹. Analysis of the region characteristic for thiocyanate absorption for 2-dipy and 4-dipy complexes suggests that the thiocyanate groups in these compounds are N-coordinated [1, 21, 22]. The coordinated isothiocyanate groups exist also in other 2-dipy complexes with rare earth thiocyanates (except Dy(NCS)₃ (2-dipy)₂·5H₂O and $Ln({\rm NCS})_3(4\text{-}dipy)_2\cdot 5{\rm H_2O}$, where Ln = Pr, Sm, Eu, and Tb [3]; in these compounds both the ionic and N-bonded thiocyanate groups exist [14]).

Nitrate Vibrations. The vibration modes of the nitrate group for the complexes studied are assigned for unidentate nitrate group with c_{2V} symmetry and for nitrate ions of D_{3h} symmetry [23, 24]. The observed bands [cm⁻¹] for the nitrate group are as follows: 1518 (v_4) , 1258 (v_1) , 1025 (v_2) , and 807–802 (v_6) for the 2-dipy complex and 1547 (v_4) , 1300 (v_1) , 1018 (v_1) , and 810 (v_6) for the 4-dipy complex). The asymmetrical stretching frequency for the nitrate ion, v_3 , occurs as a strong absorption in the region of 1385–1380 cm⁻¹. The weak band at 830 cm⁻¹ (2-dipy complex) and at 835 cm⁻¹ (4-dipy complex) may be assigned to v_2 of the nitrate ion. This suggests that these complexes contain both coordinated unidentate nitrate groups and nitrate ions. We [13] and Sinha [25] also observed frequencies due to both ionic and coordinated groups in other 2-dipy and 4-dipy complexes with some rare earth nitrates.

2,2'-Dipyridyl and 4,4'-Dipyridyl Vibrations in the region 1600–400 cm⁻¹. The IR spectrum of free 2-dipy [25, 26] and 4-dipy [27] undergoes a change when coordinated with thulium. For consistency, only the fundamental vibration modes of 2-dipy and 4-dipy are reported in Table 2. Such an effect has been observed previously for compounds of 2-dipy and 4-dipy with other rare earth salts [13–16]. IR spectra of these compounds suggest that 2-dipy and 4-dipy are coordinated to a thulium ion. In the case of 2-dipy compounds, the IR data indicated the presence of cis-2,2'-dipyridyl chelates [16].

Thermal Investigations. The 2-dipy and 4-dipy compounds with thulium perchlorate heated in air atmosphere are explosive.

TmCl₃(2-dipy)₂·H₂O loses water and 0.25 mole of 2-dipy within the temperature range of 80–120 °C with an endothermic peak at 116 °C. The remaining 2-dipy is split off in three stages. In the temperature ranges 120–180 °C and 200–275 °C, intermediate compounds containing 1.25 mole and 0.75 mole of 2-dipy were formed, respectively. Above 288 °C, the intermediate compound TmCl₃(2-dipy)_{0.75} is

Table 2. Basic IR bands of complexed 2-dipy and 4-dipy ligands (cm⁻¹)

Compound	Pyridine f	requencies	Pyridine	New bands	
	$v_{ m CN}$	v _{CC}	γсн	breathing	resulting from com- plexation
1	2	3	4	5	6
2-dipy = L [26]	1579 vs	1553 s	753 vs 738 m	995 m	
$TmCl_3L_2 \cdot H_2O$	1602 s	1580 s	760 s	1015 s	1490 w
	1598 vs	1558 m	750 s		1470 s
			740 s		1462 s
					1172 m
					1115 w
$TmBr_3L_2 \cdot 6H_2O$	1598 vs	1575 m	770 s	1010 vs	1525 w
		1565 m	760 vs		1485 s
			735 s		1470 s
					1175 w
					1115 w
$Tm(NO_3)_3L_2$	1598 vs	1570 m	765 vs	1012 vs	1490 vs
		1560 m	740 s		1470 vs
					1160 s
					1112 w
${\rm Tm}({\rm NCS})_3L_2\!\cdot\! 5{\rm H}_2{\rm O}$	1598 vs	1575 s	762 vs	1012 vs	1493 m
		1563 s	742 s		1472 m
					1178 m
					1108 w
Γ m(ClO ₄) ₃ L_2 ·6H ₂ O	1602 vs	1575 m	770 vs	1017 vs	1496 m
	1587 s	1562 w	740 s		1472 vs
					1160 s
					1114 w
4-dipy = Y [27]	1590 vs	1530 s	802 vs	982 vs	
			730 s		
$\operatorname{ImCl}_3 Y_3 \cdot 6H_2O$	1595 vs	1555 w	800 vs	1003 s	1455 w
		1535 m	725 vw		1315 m
					1045 w
$TmBr_3Y_2 \cdot 6H_2O$	1593 vs	1535 w	805 sh	1005 s	1468 w
			790 s		1355 s
			745 vw	`	1285 m
B (310) **	- منم <u>ب</u>		0.65		1050 m
$\Gamma m(NO_3)_3 Y_2 \cdot 3H_2O$	1605 vs		810 vs	1008 s	1460 vs
	1575 s	1536 vw	750 s		1432 m
D (\$100) # 077 0	4.60.0	,,,,,	725 vw	0.5.5	1042 m
$\Gamma m(NCS)_3 Y_4 \cdot 8H_2O$	1595 vs	1534 m	808 vs	998 vs	1486 w
	4.580		7.0 0		1320 w
T (OIO) W MOIO AT O	1570 w	1525	730 m	1000	1038 m
$\operatorname{\Gamma m}(\operatorname{ClO}_4)_3 Y_8 \cdot \operatorname{HClO}_4 \cdot 4H_2O$	1600 s	1535 s	805 vs	1000 s	1488 w
	1570 w		730 vw		1322 m

v, s, m, w, sh: very, strong, medium, weak, shoulder

decomposed to TmOCl. The decomposition to the oxide, Tm₂O₃, began at 540 °C (the temperature observed by *Wendlandt* was 535 °C [29]).

TmCl₃(4-dipy)₃·6H₂O losses all water between 78 and 118 °C with an endothermic DTA peak at 110 °C. During the thermal decomposition of TmCl₃(4-dipy)₃, a partial deamination takes place. The following intermediate compounds were detected in the thermolysis curves: TmCl₃(4-dipy)_{2.75} (118–140 °C), TmCl₃(4-dipy)_{2.75} (140–240 °C), TmCl₃(4-dipy)_{1.5} (240–272 °C), and TmCl₃(4-dipy)_{0.75} (272–338 °C). At 405 °C a complete loss of 4-dipy takes place and TmOCl is formed. On temperature elevation TmOCl decomposes to Tm₂O₃.

 $TmBr_3(2-dipy)_2 \cdot 6H_2O$ loses water above $70 \,^{\circ}C$, and at $100 \,^{\circ}C$ $TmBr_3(2-dipy)_2 \cdot 5H_2O$ is formed. On further heating the pentahydrate decomposes and forms $TmBr_3(2-dipy)_{1.75}$ at $155 \,^{\circ}C$. From $155-605 \,^{\circ}C$, TmOBr is formed (probably $via \,^{\circ}TmOBr \cdot TmBr_3$). Formation of Tm_2O_3 begins at $605 \,^{\circ}C$.

TmBr₃(4-dipy)₂·6H₂O loses all water within the temperature range of 40–180 °C with endothermic peaks at 80, 115, and 140 °C. 4,4'-Dipyridyl is split off in three stages and TmBr₃(4-dipy)_{1.75} and TmBr₃(4-dipy)_{0.5} are formed. From 305–400 °C, TmOBr·TmBr₃ is formed. Formation of TmOBr begins at about 427 °C. These processes are accompanied by a few endothermic effects and one exothermic effect.

The most thermally stable compound is $Tm(NO_3)_3(2-dipy)_2$, which starts losing 2-dipy at a temperature of 200 °C and is converted to $TmONO_3$. On increasing the temperature, $TmONO_3$ decomposed to the oxide. The DTA curve shows several endo- and exothermic peaks.

 $Tm(NO_3)_3(4-dipy)_2 \cdot 3H_2O$: at first 2 moles of water are eliminated (125–150 °C), while at 170–250 °C it loses all water and 0.5 mole of 4-dipy. The decomposition of $Tm(NO_3)_3(4-dipy)_{1.5}$ begins at above 250 °C to produce $TmONO_3$ (probably $via Tm(NO_3)_3 \cdot 2TmONO_3$) and finally to the oxide.

 $Tm(NCS)_3(2-dipy)_2 \cdot 5H_2O$ loses water in two steps in the temperature ranges $40-65\,^{\circ}C$ and $108-175\,^{\circ}C$ with two endothermic effects, respectively. At the third stage, the complex loses 2-dipy and the main process of thiocyanate decomposition takes place. The intermediate products of the thermal decomposition of $Tm(NCS)_3$ are difficult to identify (the solid products contain sulfide and sulfate ions). We obtained similar results for 2-dipy complexes with $Ln(NCS)_3$ [14]. During heating in air the intermediate products form $Tm_2O_2SO_4$ at $400\,^{\circ}C$. The DTA curve shows several exothermic peaks, the first of which is very strong ($340\,^{\circ}C$). On temperature elevation, $Tm_2O_2SO_4$ decomposes stepwise to the oxide.

 $Tm(NCS)_3(4-dipy)_4 \cdot 8H_2O$ also loses water in two steps. At the first stage, 1 mole of water is split off (80–138 °C), and at 138–160 °C it loses all water. Endothermic effects are observed at 108 °C and 138 °C. The anhydrous complex eliminates 2.25 moles of 4-dipy (160–280°), and $Tm(NCS)_3(4-dipy)_{1.75}$ is formed. Upon further heating, intermediate compounds decompose to $Tm_2O_2SO_4$. Exothermic processes appear on the DTA curve at 328 °C. Decomposition of $Tm_2O_2SO_4$ to the oxide takes place within the temperature range of 400-700 °C.

The obtained crystalline compounds $TmBr_3(2-dipy)_2 \cdot 6H_2O$ and $TmBr_3 \cdot (4-dipy)_2 \cdot 6H_2O$ and the intermediate compounds formed during the thermal decomposition process are new examples of complexes with ligand isomerism.

Dipyridyl Complexes 1081

Experimental

The hydrated thulium salts were prepared from 99.9% pure oxides (obtained from Koch-Light Lab.) according to the procedure described in the literature [3–6] for other lanthanide salts. The composition of these salts was controlled by determining the thulium content. The ligands 2-dipy and 4-dipy p.a. were obtained from Schuchard München, perchloric acid 60% p.a. was a Hopkin-Williams product. Other chemicals were analytical reagent grade from POCh-Gliwice.

The thulium content was determined complexometrically with a standard EDTA solution against xylenol orange as indicator. The chloride, bromide, and thiocyanate content was established by Volhard's method and the perchlorate content by solvent extraction with ferroin [7]. Nitrogen, carbon and hydrogen were determined by elemental analysis, using V_2O_5 as oxidized agent. Analysis and identification of the solid decomposition products were performed by elemental and chemical analysis [8, 9], IR spectra and derivatographic curves. Some intermediate and final products were isolated [10, 11].

The IR spectra were recorded within the 4000–400 cm⁻¹ region with a M-80 Specord instrument. Samples were prepared as KBr discs.

Thermal investigations were carried out with a derivatograph type Q-1500 in the temperature range $20-1000\,^{\circ}\text{C}$ at a heating rate of $4\,^{\circ}\text{C}\,\text{min}^{-1}$ in air atmosphere in ceramic crucibles. A sample of $50\,\text{mg}\,\alpha\text{-Al}_2\text{O}_3$ served as reference. The sensitivity of the galvanometer for DTA curves was 1/5; DTG-1/5.

The X-ray diffractograms were recorded using a D-5000 diffractometer and CuK_{α} (Ni-filtered) radiation. The measurements were made within the range $2\theta = 3-50^{\circ}$ by means of the *Debye–Scherrer* method.

The solubilities of the complexes in water at 21 ± 1 °C were determined by measuring the concentration of Tm(III) ions in saturated solutions by the Arsenazo(III) method [12].

All complexes were prepared by methods published in previous papers [3, 4, 13].

Acknowledgements

The present study was conducted within the PB 0636/P3/93/04 research programme.

References

- [1] Hart F. A., Laming F. P. (1965) J. Inorg. Nucl. Chem. 27: 1825
- [2] Lobanov N. I., Smirnova V. A. (1963) Zh. Neorg. Khim. 8: 2208
- [3] Czakis-Sulikowska D., Radwańska-Doczekalska J., Sójka G. (1984) Monatsh. Chem. 115: 961
- [4] Czakis-Sulikowska D., Radwańska-Doczekalska J., Miazek T. (1982) ibid. 113: 827
- [5] Bukietyńska K., Jeżowska-Trzebiatowska B. (1975) IXth Summer School on Coordination Chemistry "Theory-Structure-properties of complex compounds", Karpacz-Bierutowice, p. 25
- [6] Ferraro J. R., Davis K. C. (1969) Inorg. Chim. Acta 3: 685
- [7] Honigschid-Grossich R. (1964) Z. Anal. Chem. 201: 446
- [8] Babko K. A., Pilipienko A. T. (1976) Photometric analysis methods of determination non-metals,. Mir Publ., Moscow
- [9] Cygański A. (1977) Talanta 24: 361
- [10] Cygański A. (1976) Roczniki Chem. (Ann. Soc. Chim. Polonorum) 50: 391
- [11] Ladzińska-Kulińska H. (1979) Thermochim. Acta 33: 293
- [12] Sawin S. B. (1966) Arsenazo III. Atomizdat, Moscow
- [13] Czakis-Sulikowska D., Radwańska-Doczekalska J. (1986) Monatsh. Chem. 117: 783; (1987) ibid.
 118: 1243; (1975) Roczniki Chem. (Ann. Soc. Chim. Polonorum) 49: 197; (1976) ibid. 50: 2181; (1979) Polish J. Chem. 53: 2439

- [14] Czakis-Sulikowska D., Radwańska-Doczekalska J., Markiewicz M. (1980) Polish J. Chem. 63: 417; (1992) ibid. 66: 751; (1993) ibid. 67: 1011
- [15] Czakis-Sulikowska D., Radwańska-Doczelkalska J. (1979) J. Inorg. Nucl. Chem. 41: 1299
- [16] Czakis-Sulikowska D., Radwańska-Doczekalska J. (1975) IXth Summer School on Coordination Chemistry "Theory-Structure-Properties of Complex Compounds", Karpacz-Bierutowice, p. 39
- [17] Ross S. D. (1962) Spectrochim. Acta 18: 225
- [18] Hathaway B. I., Underhill A. E. (1961) J. Chem. Soc. 3091
- [19] Grandey R. C., Moeller T. (1970) J. Inorg. Nucl. Chem. 32: 333
- [20] Foster R. J., Bodner R. L., Hendricker D. G. (1972) ibid. 34: 3795
- [21] Sabatini A., Bentini J. (1965) Inorg. Chim. 4: 959
- [22] Lewis J., Nyholm R. S., Williams P. J. (1961) J. Chem. Soc. 4590
- [23] Addison C. C., Simpson W. B. (1965) ibid. 598
- [24] Gatehouse B. M., Livingstone S. E., Nyholm R. S. (1957) ibid. 4222
- [25] Sinha S. P. (1964) Spectrochim. Acta 20: 879
- [26] Strukl J. S., Walter J. L. (1971) ibid. 27A: 209; (1971) ibid. 27A: 223
- [27] Ferraro J. R., Davis K. C. (1969) Inorg. Chim. Acta 3: 685
- [28] McWihinnie R. W., Miller J. D. (1965) Adv. Inorg. Chem. Radiochem. 12: 137
- [29] Wendlandt W. W. (1959) J. Inorg. Nucl. Chem. 9: 136

Received July 6, 1993. Accepted (revised) October 19, 1993